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We present a theoretical approach for studying the deformation of grafted polymer layers in
strong shear flows that calculates the deformation of grafted chains and the solvent flow profile
within the layer in a mutually consistent fashion. We illustrate this approach by considering the
deformation of Alexander—de Gennes brushes in simple shear flows. Our model predicts nonuniform
deformation of grafted polymer chains and appreciable swelling of brushes for shear rates exceeding
771 ~ k,T/(n€d), the characteristic hydrodynamic relaxation rate of a blob of the unperturbed
brush. An asymptotic swelling of ~ 25% for 47 > 1 is predicted, in accordance with theories of
brush response to strong applied tangential boundary forces. We briefly compare our results to recent
experiments and to theories of brush deformation in shear conditions and outline the generalization
of our approach to more realistic models of grafted polymer layers and to adsorbed polymer layers

in strong flows.

PACS number(s): 36.20.Ey, 68.10.Et, 83.50.Lh

I. INTRODUCTION

The properties of polymer brushes have been studied
intensively during the past two decades. The equilibrium
properties of polymer brushes are now well understood
and are reviewed in Refs. [1,2]. Recent studies have fo-
cused on the properties of polymer brushes subjected to
shear and/or compressional forces [3-14]. Such forces
may occur when brushes in solution are exposed to sol-
vent flows or when two brush-bearing surfaces in contact
are forced into relative motion.

In the case of polymer brushes subjected to solvent
flows, there is evidence that the brush thickness can in-
crease in sufficiently high shear-rate flows [3,5]. These ex-
periments utilized a modified surface forces apparatus to
study the normal forces between brush-bearing surfaces
initially separated by a solvent gap and put into relative
lateral motion. Above a critical value of relative veloc-
ity, an abrupt increase in the normal force was observed.
This behavior was interpreted in terms of the closing of
the solvent gap due to brush swelling under shear. For
the parameters studied, brush swelling of ~20% was in-
ferred. Recently, neutron reflectivity experiments have

been developed for in situ studies of grafted polymer -

conformation in controlled shear flows [7-9]. These ex-
periments provide motivation for theoretical modeling of
grafted polymer layers in strong flows.

To date, theoretical studies have taken two directions.
In the linear regime, appropriate for weak flows, studies
based on the Brinkman equation for flow through porous
media have been used to calculate solvent velocity pro-
files for various models of equilibrium brushes [10,11].
Implicit in these studies is the assumption that sol-
vent flow does not appreciably perturb the brush struc-
ture. For the Alexander—de Gennes model of the poly-
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mer brush [15,16], the density is uniform throughout the
brush and solvent flow profiles are predicted to decay ex-
ponentially into the brush with a characteristic penetra-
tion depth [, ~ £, the mean distance between grafting
points [10]. Self-consistent mean-field models predict a
more diffuse brush structure, with a monomer density
profile that vanishes quadratically at the free surface of
the brush [17,18]. In this case, weak solvent flows are
predicted to penetrate much deeper into the brush [11].

In the nonlinear regime, appropriate for strong flows,
several models have been proposed for the deformation
of brushes [12-14]. These studies effectively ignore the
details of solvent flow inside a brush by modeling the
solvent-brush frictional forces by an ad hoc shear force
f, applied to the free surface of a brush. This neces-
sarily leads to uniform stretching of the grafted chains.
For asymptotically large f“ , moderate brush swelling of
25% [13] to 33% [14] is predicted, values consistent with
experiment [3]. However, a quantitative comparison with
experiment is difficult since the shear rate 4 is the rel-
evant experimental control parameter, whereas the ef-
fective boundary shear force f|| is unknown. In order
to make more direct contact with experiments, a more
complete theory is necessary. In this paper, we report
a theoretical attempt to determine, in a mutually con-
sistent fashion, both brush deformation and solvent pen-
etration into a brush in the strong deformation regime.
Our approach represents a starting point towards a re-
alistic theory of grafted and adsorbed polymer layers in
strong shear flows.

II. MODEL

Our model for brush deformation in solvent flows is a
scaling theory based on a modification of the model of
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Refs. [12,13] to account for the nonuniform stretching of
grafted polymer chains in flows [19-22]. We have recently
applied this type of model to study the deformation of
polymer brushes on porous grafting surfaces subject to
permeation flows through the grafting surface [23].

We consider a monodisperse brush of polymers with
degree of polymerization N grafted to a planar surface
at grafting density o = £;? and exposed to an external
linear shear flow of solvent with shear rate 4. We restrict
our attention to high grafting densities £, < Rp ~ N3/5%q
and for the purposes of illustrating our approach adopt
the Alexander—de Gennes ansatz that all chains in the
brush behave alike. Thus we represent the chains in
the brush as strings of excluded-volume blobs, assume
that all chain ends are at the outer edge of the brush,
and write the free energy per chain as a sum of an elas-
tic term F, involving the conformation of a deformed
Gaussian string of blobs and an osmotic term Fj, in-
volving interactions between blobs. Note that we do
not assume a uniform stretching of the chains as con-
sidered previously [12-14]. Instead, the internal struc-
ture of the layer and the velocity profile are determined
in a mutually consistent manner. Of course, in a truly
self-consistent approach the Alexander—-de Gennes ansatz
would have to be relaxed. Although this lies beyond the
scope of the present work, we will present elsewhere the
results of an approach in which this assumption is par-
tially relaxed [24].

In the absence of flow, the Alexander—de Gennes de-
scription results in a brush of thickness H ~ N£_2/ 3
formed of close-packed blobs of size & [15,16]. In the
presence of strong shear flow, however, the grafted chains
stretch and tilt away from the normal direction, lead-
ing to a somewhat distorted brush within which there
is some (unknown) solvent flow profile V = V(z)Z. We
picture this deformed brush as consisting of tilted chains
of blobs [19], as sketched in Fig. 1. Since the chain ex-
tension is due to the integrated hydrodynamic drag on
each chain rather than a force applied to the chain ends,
the hydrodynamic blob size £ and chain tilt angle 6 are
not constants, but are functions of the distance from the

FIG. 1. Sketch of an extended brush in a strong solvent
shear flow V' (2) ~ 42z, with &(z) < &o and H > H,, where &
and Hj are the equilibrium blob size and brush thickness in
the absence of flow.
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grafting plane, which we must determine self-consistently
with the solvent flow profile in the brush. (Note that this
is an intrinsically nonlinear problem.)

The elastic energy per chain is obtained by considering
each chain as a stretched Gaussian string of blobs and
may generally be written [17,23] as

L ds
o &(s)’
where a is the monomer size, s is an arc-length coordi-
nate, L is the total arc length of a tilted chain of blobs,
and ¢; is a dimensionless constant of order unity.

Consider now a slab of thickness {(s) at some height
z(s) from the grafting surface. Since the chains are
stretched such that £ < &, the volume fraction of
blobs in this slab is below the semidilute threshold
and hence the local interaction between chains may be
approximated by a virial expansion in the blob den-
sity [12,13]. The local interaction energy per blob is of
order k, T [£%(s)/€3 cosO(s)], where 0(s) is the local tilt
angle measured from the Z direction and hence the inter-
action energy per chain has the form

ds ﬁ(s)2
Fin = G2k T/ s) &2 cosﬂ(s)

-t [ e

cosf(s)’ )
where ¢&; is another dimensionless constant of order unity.
Our estimate of the free energy per deformed chain is
given by the sum of the contributions from Egs. (1) and
(2). Using these, one can define an effective chain ten-
sion #(s) as follows. Consider a short section of chain
of length As containing An monomers. Equations (1)
and (2) give the free energy of this section of chain as
AF = k,T[6:1£(s)7! + 265 %¢(s)/ cos 8(s)]As. This ex-
pression may be written exclusively in terms of Az, Az,
and An by using As? = Az?+ AzZ%, cosf = Az/As, and
the local expression for chain stretching under external
tension, As ~ £72/345/3An [19,23], to eliminate ¢ and 6
from AF. Subsequent variation of AF with respect to
Az at fixed An and Az and of AF with respect to Az
at fixed An and Az give the components ¢, and ¢, of the
effective local chain tension as

Fg=é&k,T (1)

t]:(;) — Siz(i()S) + ¢y 6(0) tan@(s), (3)

t.(s) _ cosf(s) &(s) (2 —cos?8(s) 4
k,T a £(s) 2Tz &2 ( cos? 0(s) )’ (4)
where ¢; = 5¢1/2 and ¢z = ¢é2/2. This effective ten-

sion determines the local departure from equilibrium of
a representative chain, under conditions where all chains
are constrained to behave identically. It already contains
osmotic terms and so should not be confused with the
(purely elastic) chain tension in a deformed Gaussian
chain, which, within a nonscaling, mean-field approach
to brushes [17,18], is balanced by osmotic pressure gra-
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dients. Our effective tension is constructed so that, in

the absence of flow, the equilibrium condition is for i

to vanish (t, = t, = 0). Indeed, if one demands that
both ¢ = £ and 6 = 0 in the absence of flow (as in the
equilibrium Alexander-de Gennes brush), this fixes the
constants as ¢; = ca = 1. We use this fact below.

In mechanical equilibrium, the hydrodynamic drag on
a short section of chain of length As at z(s) must be bal-
anced by the differential tension on this section of chain.
Assuming laminar flow with V = V(z)& in the brush, this
implies ¢, = 0 and At, = [0t,(s)/0s]As = csnV (s)As,
where c3 is another dimensionless constant discussed be-
low. [ec3nV(s)As represents the drag force on a linear
string of Stokes blobs of length As.] These requirements
lead to
cos3/20(z)

é(%) = Y cos2 B()] 12 éo, (5)
te(2) e sin 6(z) §( ) an 8z
kBT”e( te Eote()

T cos()(z’) (6)

where a = (cz/cl)l/z, H is the thickness of the deformed
brush, and we have changed the independent variable to
z, the normal distance from the grafting surface.

The shear stress 0., in the brush is the sum of the

contributions from the viscous dissipation due to solvent

flow ol = ndV/dz and from the elastic deformation of

polymer chains cr(p). The polymer contribution U(p ) may

be viewed as the product of the effective lateral chain
tension t,(z) and the number density of chains crossing

the plane at height z: o® =1, (2)/€%. Requiring that
the total shear stress is uniform throughout the grafted
layer, do,,/dz = 0, gives an additional relation between
chain conformation and solvent velocity in the brush

V. 1 V(z)
dz? caf—gcos 6(z) (7)

Note that although Eq. (7) resembles a Brinkman equa-
tion, its origin and interpretation are quite different since
it arises explicitly from chain tension effects.

Equations (5)—(7) are subject to appropriate bound-
ary conditions at z = 0 and z = H. We assume no-slip
boundary conditions at the grafting surface and continu-
ity of shear stress at the free surface of the brush. Fur-
thermore, we assume that the effective tension Eq. (6)
vanishes at the free end of each chain. Thus our bound-
ary conditions are V =0 at z = 0, and dV/dz = 4 and
6=0atz=H.

For a given brush thickness H, Eqgs. (5)—(7) together
with the above boundary conditions uniquely determine
V(z), £(2), and 6(z) as a function of the solvent shear rate
outside the brush 4 and the equilibrium brush parame-
ters IV and &. The appropriate brush thickness is then
obtained by demanding that a chain of blobs stretched to
height H has N monomers via the conservation relation

N”‘*/(,Haz‘)‘f‘s?(;) (5(5))5/3’ - ®
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where c4 is another constant of order unity.

The solution of our model equations requires a numer-
ical approach. To facilitate this analysis, we choose for
definiteness to set the unknown numerical constants cs
and cg4, along with ¢; and ¢z, to unity and reformulate
these equations as follows. Using Eq. (5), we eliminate
{(z) from Eq. (6) and then differentiate both sides with
respect to z. The resulting differential equation, along
with Egs. (7) and (8), is then put into dimensionless form
using the scaled variables ¢ = z/§, and v = V/Vj,, where
Vo = k,T/(n€E). The final scaled system of equations is

given as
v _ v(()
4z~ c0s0(Q)’ ©
do
c= 9 [0(O1v(<)s (10)
where g [0] = [cos 8(2—cos? 8)]3/2/(6 — 7 cos? 8+ 3 cos* ).

These are subject to the following boundary conditions:
(i) v =0at ¢ = 0 and (ii) dv/d{ = 47 and 6 = 0 at
¢ = h, where 7 = né3/k,T is of order the characteris-
tic hydrodynamic relaxation time of a blob of radius &,.
Equation (8) also yields the constraint condition

1/3

h
nbf_v/O d¢ [2 = cos®0(C)] (11)

where ny = N(a/€)%/® is the number of blobs in the
unperturbed brush and h = H/¢,.

III. RESULTS AND DISCUSSION

We have studied the solution of Egs. (9)-(11) plus
boundary conditions as a function of the dimensionless
shear rate 47 and the height of the unperturbed brush

Hy = np€p. Figure 2 shows plots of the relative brush
0.2
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0.1
0.05
0

0 1 2 3 4
YT
FIG. 2. Plots of the relative brush swelling

S8h = (H — Hyo)/Ho vs 47 for brushes initially with ny = 5
blobs (lowest curve), n, = 10 blobs (middle curve), and
np = 15 blobs (highest curve).
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swelling 6h = (H — Hy)/Hy vs 47 for brushes initially
with np = 5, 10, and 15 blobs. We find the onset of sig-
nificant brush swelling at 47 ~ 1, followed by a saturation
of swelling at large /7. Figure 3 shows the scaled solvent
velocity profiles V/V, vs z/H for the case of 47 = 2, while
Fig. 4 shows profiles of the associated tilt angle 8 and the
scaled blob size £/&,. These figures show that, roughly
speaking, stretched chains can be divided into two re-
gions: (i) an interior region of essentially uniform stretch-
ing and tilt in which V is very small and (ii) a boundary
region of thickness Az ~ £, of weakly stretched and tilted
chains in which £€(z) and 6(z) vary rapidly. The thickness
of this boundary layer corresponds roughly to the hy-
drodynamic penetration depth I, = [V(H)/V'(H)] ~ &
calculated from the velocity profiles (cf. Fig. 3).

Our results can be rationalized in terms of a “quasi-
monoblock” picture [25] in which uniformly tilted and
stretched chains with constant blob size £y and tilt an-
gle OB terminate in an unperturbed virtual end blob of
size €ena =~ o, as sketched in Fig. 5 [26]. If the drag
force on this end blob f, ~ nV (H)&, obtained from the
numerically computed velocity profile V(z), is used to
compute the uniform stretching of the remainder of the
chain, the resulting é&yp and Oyp are in excellent accord
with the numerically obtained £ and 6 in the interior re-
gion. This picture explains both a qualitative similarity
and a quantitative difference between our predictions and
those of Barrat [13]. Barrat assumed a fixed blob size émp
for all blobs including the outermost one. Under strong
flows, émB < €end and so this leads to an underestimate
of f,. Moreover, it is clear from Fig. 2 that, for fixed
grafting density and shear rate, short brushes swell less
than longer ones. This can again be understood from the
quasimonoblock picture: if brush swelling is analyzed on
the basis of the stretching of the “active” interior portion
of the grafted chains (disregarding the last blob of size
end), then the resulting 6k is found to be almost indepen-
dent of ny (e.g., dh ~ 15% for y7 = 2). Only in the limit

VIV,
1.5

0.5

0 02 04 06 08 1
z/H

FIG. 3. Plots of the scaled solvent velocity profiles V/V,
as a function of the reduced distance z/H from the grafting
surface for brushes initially with n; = 5 blobs (highest curve),
np = 10 blobs (middle curve), and n, = 15 blobs (lowest
curve) sheared at Y7 = 2.
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FIG. 4. Plots of the tilt angle 8 (in radians) and scaled
blob size ¢/€o0 vs z/H for 47 = 2. The main plot shows 6
for brushes with n, = 5 blobs (lowest curve), n, = 10 blobs
(middle curve), and ns = 15 blobs (highest curve), while the
inset shows the analogous curves of £/£o in reverse order.

of large m; is this solvent penetration effect negligible
(allowing the use of a pure monoblock approach, which
ignores the details of solvent hydrodynamics [12,13]) and
even then there are important consequences for f, as de-
tailed above.

Our predictions should be directly relevant to neutron
reflectivity experiments on brushes under shear [7-9], al-
though it should be emphasized that quite high shear
rates are required to achieve significant swelling [27].
Turning to the experiments of Ref. [3], we note that the
solvent gap separating brush-bearing surfaces in relative
motion decreases appreciably as the brushes swell. The
solvent shear rate in the gap is accordingly not constant,
but coupled to the brush swelling process. A detailed
comparison of our model with these experiments thus
requires a more elaborate analysis than we have given
here. However, we may make some rough comparison
with the steady-state conditions that prevail once the
brushes have swollen into apparent contact at a criti-
cal velocity V.. These have recently been interpreted
in terms of a thin viscous lubrication layer of thickness
d ~ & and effective viscosity neg separating the two

FIG. 5. Sketch of the “quasimonoblock” picture of an ex-
tended polymer chain as a section of uniformly tilted and
stretched blobs with £ = é&mB and 6 = Oup in an essentially
quiescent solvent, terminating in an unperturbed end blob of
size €ena =~ £o in which the solvent velocity is nonvanishing.
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sheared polymer brushes [5,6,28]. For the system stud-
ied in Ref. [3], one has V. ~ 0.0015 ms™?, & ~ 100 A,
and 7eg ~ 1072 Pa s, implying a characteristic relax-
ation time of 7 ~ negé3/k T ~ 2.5 us. Assuming linear
shear flow in a lubrication film of thickness £y, one has
4 =~ V. /& =~ 1.5x10° s71, giving 47 ~ 3/8. According to
our model, this is roughly a factor of 10 smaller than that
required to produce the experimentally reported brush
swelling of ~20%. This discrepancy is not surprising due
to the uncertainties in the experimental parameters such
as neg and in the various (unknown) numerical prefactors
in our scaling theory and to various approximations, as
detailed below.

The calculation we have described has inherent limita-
tions. We have adopted the Alexander—de Gennes ansatz
that all chains stretch alike. This approximation system-
atically underestimates the hydrodynamic penetration of
solvent into the brush [11] and hence overestimates the
crossover shear rate marking the onset of brush swelling.
As mentioned previously, a fully self-consistent treatment
would allow dispersion in the chain end positions. It
would also require a more detailed description of hydro-
dynamic forces, perhaps along the lines of the multiple
scattering theory of Ref. [29] for adsorbed homopolymer
layers. This, however, would be a formidable numerical
task. It seems likely that the decreasing density at the
periphery of a real brush will have a strong effect on in-
dividual chain conformations, but it is less obvious that
the global swelling behavior will be qualitatively affected.
Work in progress, which allows for a partial relaxation of
the Alexander—de Gennes ansatz, appears to support this
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view [24]. The present approach is also limited by finite
extensibility of the grafted polymer chains. For suffi-
ciently high 47, the chains approach full extension and
the blob concept employed in our model to estimate elas-
tic and hydrodynamic forces breaks down. This regime,
although experimentally relevant, would require a sub-
stantially modified theoretical analysis.

In conclusion, we have presented a mutually consis-
tent theoretical approach addressing the deformation of
grafted polymer layers in strong (solvent) shear flows.
Our calculations for polymer brushes in shear flows com-
pare well with earlier, ad hoc methods in suitable limits.
This helps establish the validity of our theoretical ap-
proach, which provides a solid starting point for more re-
fined treatments of grafted polymer layers in strong flows.
Furthermore, our approach may be readily extended to
address more general problems involving interfacial poly-
mer layers in strong shear flows. Work in progress is con-
sidering the details of chain deformation and desorption
in grafted polymer layers [24] and in adsorbed polymer
layers [30] in strong shear flows, the latter complementing
recent studies in the linear regime [29,31].

ACKNOWLEDGMENTS

We thank M. Aubouy, T. Cosgrove, J. Klein,
M. Rafailovich, J. Sokolov, and C. Toprakcioglu for in-
teresting discussions and correspondence. This work was
supported in part by the EPSRC and the DTI Colloid
Technology Programme.

(1] S.T. Milner, Science 251, 905 (1991).

[2] A. Halperin, M. Tirrell, and T.P. Lodge, Adv. Polym.
Sci. 100, 33 (1992).

[3] J. Klein, D. Perahia, and S. Warburg, Nature 352, 143
(1991).

[4] J. Klein, Y. Kamiyama, H. Yoshizawa, J.N. Israelachvili,
G.H. Fredrickson, P. Pincus, and L.J. Fetters, Macro-
molecules 26, 5552 (1993).

[5] J. Klein, Colloids Surf. A 86, 63 (1994).

[6] J. Klein, E. Kumacheva, D. Perahia, D. Mahalu, and
S. Warburg, Faraday Discuss. 98, 173 (1994).

C. Toprakcloglu (prlvate communication).

T. Cosgrove (private communication).

G.H. Fredrickson and P. Pincus, Langmuir 7, 786 (1991).
S.T. Milner, Macromolecules 24, 3704 (1991)

Y. Rabin and S. Alexander, Europhys. Lett. 13, 49
a
J.
V.

-L. Barrat Macromolecules 25, 832 (1992).

Kumaran Macromolecules 26, 2464 (1993).
S. Alexander, J. Phys. (Paris) 38, 983 (1977).
P.G. de Gennes, J. Phys. (Paris) 37, 1443 (1976); Macro-
molecules 13, 1069 (1980).

[17] S.T. Milner, T.A. Witten, and M.E. Cates, Europhys.
Lett. 5, 413 (1988); Macromolecules 21, 2610 (1988).

[18] A.M. Skvortsov, A.A. Gorbunov, I.V. Pavlushkov,
E.B. Zhulina, O.V. Borisov, and V.A. Priamitsyn,
Vysokomol. Soedin. A 30, 1615 (1988); E.B. Zhulina,
V.A. Priamitsyn, and O.V. Borisov, ibid. 31, 185 (1989).

[19] P. Pincus, Macromolecules 9, 386 (1976).

[20] A. Ajdari, F. Brochard-Wyart, P.G. de Gennes,
L. Leibler, J.-L. Viovy, and M. Rubinstein, Phys-
ica A 204, 17 (1994); M. Rubinstein, A. Ajdari,
L. Leibler, F. Brochard-Wyart, and P.G. de Gennes,
C. R. Acad. Sci. Paris II 316, 317 (1993).

[21] F. Brochard-Wyart, Europhys. Lett. 23, 105 (1993).

[22] F. Brochard-Wyart, H. Hervet, and P. Pincus, Euro-
phys. Lett. 26, 511 (1994).

[23] J.L. Harden and M.E. Cates, J. Phys. (France)II 5, 1093
(1995); 5 1757 (1995).

[24] M. Aubouy, J.L. Harden, and M.E. Cates (unpublished).

[25] See Refs. [12,13] for a description of the usual monoblock
approach to brushes.

[26] The boundary conditions on our continuum equations im-
ply € = £o at the extremity of the brush. Strictly, how-
ever, the continuum limit breaks down at this point and



53 DEFORMATION OF GRAFTED POLYMER LAYERS IN STRONG . .. 3787

£end should be obtained from the solution of éeng = £(z =
H —£enda), which is somewhat less than & . However, since
solvent flow penetrates to a depth £o, the effective drag
force f” is actually determined by £o rather than £ena.
[27] For & = 1000 A, corresponding to a very modest grafting
density, and for a typical solvent viscosity of 10~ Pas,
the onset of significant swelling occurs at 4 =~ 4000 s™1.

[28] J. Klein (private communication).

[29] D.T. Wu and M.E. Cates, Phys. Rev. Lett. 71, 4142
(1993).

[30] J.L. Harden, M. Aubouy, and M.E. Cates (unpublished).

[31] P. Sens, C.M. Marques, and J.-F. Joanny, Macro-
molecules 27, 3812 (1994).



